All Issue

2024 Vol.11, Issue 4 Preview Page

Original Article

31 December 2024. pp. 229-243
Abstract
References
1

Austin, M.P. and Van Niel, K.P. 2011. Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography 38(1): 1-8.

10.1111/j.1365-2699.2010.02416.x
2

Barbet‐Massin, M. and Jetz, W. 2014. A 40‐year, continent‐wide, multispecies assessment of relevant climate predictors for species distribution modelling. Diversity and Distributions 20(11): 1285-1295.

10.1111/ddi.12229
3

Bede-Fazekas, Á. and Somodi, I. 2020. The way bioclimatic variables are calculated has impact on potential distribution models. Methods in Ecology and Evolution 11: 1559-1570.

10.1111/2041-210X.13488
4

Böhner, J. and Antonic, O. 2009. Land-surface parameters specific to topo-climatology. In, Hengl T. and Reuter H.I. (eds), Geomorphometry-Concepts, Software, Applications. Elsevier, Amsterdam, Netheralnds. pp. 195-226.

10.1016/S0166-2481(08)00008-1
5

Bradie, J. and Leung, B. 2017. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. Journal of Biogeography 44(6): 1344-1361.

10.1111/jbi.12894
6

Brun, P., Thuiller, W., Chauvier, Y., Pellissier, L., Wüest, R.O., Wang, Z., and Zimmermann, N.E. 2020. Model complexity affects species distribution projections under climate change. Journal of Biogeography 47(1): 130-142.

10.1111/jbi.13734
7

Bryn, A., Bekkby, T., Rinde, E., Gundersen, H., and Halvorsen, R. 2021. Reliability in distribution modeling-a synthesis and step-by-step guidelines for improved practice. Frontiers in Ecology and Evolution 9: 658713.

10.3389/fevo.2021.658713
8

Čengić, M., Rost, J., Remenska, D., Janse, J.H., Huijbregts, M.A., and Schipper, A.M. 2020. On the importance of predictor choice, modelling technique, and number of pseudo‐absences for bioclimatic envelope model performance. Ecology and Evolution 10(21): 12307-12317.

10.1002/ece3.685933209289PMC7663074
9

Chae, Y., Park, J., Choi, Y., Yang, Y., Kim, H., Seo, S., Sung, J., and Cho, J. 2021. Building and Assessing Adaptive Capacity to Climate Change for the National Risk Management: Economic Analysis of the Extreme Climate Risks. Scientific Rep. No. TRKO202200017613, Korea Environment Institute, Sejong, Korea. (in Korean)

10

Cho, S.H., Park, J.Y., Park, J.H., Lee, Y.G., Mun, L.M., Kang, S.H., Kim, G.H., and Yun, J.G. 2015. Division 1 ; A Study for Continue and Decline of Abies koreana Forest using Species Distribution Model - Focused in Mt. Baekwun Gwangyang-si, Jeollanam-do -, Journal of Korean Society of Forest Science 104(3): 360-367. (in Korean)

10.14578/jkfs.2015.104.3.360
11

Crimmins, S.M., Dobrowski, S.Z., Greenberg, J.A., Abatzoglou, J.T., and Mynsberge, A.R. 2011. Changes in climatic water balance drive downhill shifts in plant species' optimum elevations. Science 331(6015): 324-327.

10.1126/science.119904021252344
12

Effrosynidis, D. and Arampatzis, A. 2021. An evaluation of feature selection methods for environmental data. Ecological Informatics 61: 101224.

10.1016/j.ecoinf.2021.101224
13

Foden, W.B., Young, B.E., Akçakaya, H.R., Garcia, R.A., Hoffmann, A.A., Stein, B.A., Thomas, C.D., Wheatley, C.J., Bickford, D., Carr, J.A., Hole, D.G., Martin, T.G., Pacifici, M., Pearce-Higgins, J.W., Platts, P.J., Visconti P., Watson, J.E.M., and Huntley, B. 2019. Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews Climate Change 10(1): e551.

10.1002/wcc.551
14

Fryer, D., Strümke, I., and Nguyen, H. (2021). Shapley values for feature selection: The good, the bad, and the axioms. IEEE Access 9: 144352-144360.

10.1109/ACCESS.2021.3119110
15

Hong, S., Jang, I., Jeong, H.M., Yeo, I., Shin, M.S., Kim, J.Y., Kim, D., Park, S., Ahn, J.S., Lee, H.R., Han, S., Kim, B.J., Lee, S., Jeong, G., Park, I.G., and Park, Y.M. 2020. Climate change risk assessment for Korean ecosystem. National Institute of Ecology, Seocheon, Chungcheongnam-do, Korea. (in Korean)

16

Hong, S., Oh, J., Cha, J., and Lee, K. 2023. Plant species richness in Korea utilizing integrated biological survey data. Korean Journal of Ecology and Environment 56(4): 363-374. (in Korean)

10.11614/KSL.2023.56.4.363
17

Kim, J., Hong, S., and Shin, M. 2018. Analysis of Sensitivity and Vulnerability of Endangered Wild Animals to Global Warming. Journal of Climate Change Research. 9(3): 235-243. (in Korean)

10.15531/KSCCR.2018.9.3.235
18

KMA Climate Information Portal. 2022. MK-PRISM and SSP scenario climate dataset. http://climate.go.kr/atlas/map/skorea. Accessed 10 October 2023.

19

Komorowski, M., Marshall, D.C., Salciccioli, J.D., and Crutain, Y. 2016. Exploratory data analysis. In, Secondary Analysis of Electronic Health Records. Springer Nature, Cham, Switzerland. pp. 185-203.

10.1007/978-3-319-43742-2_1531314267
20

Koo, K.A. and Kim, D. 2020. Review forty-year studies of Korean fir (Abies koreana Wilson). Korean Journal of Environment and Ecology 34(5): 358-371. (in Korean)

10.13047/KJEE.2020.34.5.358
21

Koo, K.A., Kim, J., Kong, W., Jung, H., and Kim, G. 2016. Projecting the potential distribution of Abies koreana in Korea under the climate change based on RCP scenarios. Journal of the Korea Society of Environmental Restoration Technology 19(6): 19-30. (in Korean)

10.13087/kosert.2016.19.6.19
22

Koo, K.A., Kong, W.S., Park, S.U., Lee, J.H., Kim, J., and Jung, H. 2017a. Sensitivity of Korean fir (Abies koreana Wils.), a threatened climate relict species, to increasing temperature at an island subalpine area. Ecological Modelling 353: 5-16.

10.1016/j.ecolmodel.2017.01.018
23

Koo, K.A., Park, S.U., Kong, W.S., Hong, S., Jang, I., and Seo, C. 2017b. Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties. Ecological Modelling 353: 17-27.

10.1016/j.ecolmodel.2016.10.007
24

Kursa, M.B., Jankowski, A., and Rudnicki, W.R. 2010. Boruta-a system for feature selection. Fundamenta Informaticae 101(4): 271-285.

10.3233/FI-2010-288
25

Lee, K., Kim, D., Cha, J., and Hong, S. 2023a. Fine-Scale Species Distribution Modeling of Abies koreana across a Subalpine Zone in South Korea for In Situ Species Conservation. Sustainability 15(11): 8964.

10.3390/su15118964
26

Lee, S., Park, H., Jeong, A., Lee, Y., Koo, S., and Kim, M. 2023b. Management plans for Korean national parks to conserve the habitat of the Korean fir (Abies koreana). Biological Conservation 287: 110285.

10.1016/j.biocon.2023.110285
27

Li, J., Pandey, B., Dakhil, M.A., Khanal, M., and Pan, K. 2022. Precipitation and potential evapotranspiration determine the distribution patterns of threatened plant species in Sichuan Province, China. Scientific Reports 12(1): 22418.

10.1038/s41598-022-26171-536575208PMC9794706
28

Ministry of Environment. 2015. The 2nd National Climate Change Adaptation Plan (2016-2020). The Government of the Republic of Korea, Seoul, Korea. (in Korean)

29

Ministry of Environment. 2020. The 3rd National Climate Change Adaptation Plan (2021-2025). The Government of the Republic of Korea, Seoul, Korea. (in Korean)

30

Ministry of Environment. 2023. The Enhanced 3rd National Climate Crisis Adaptation Plan. The Government of the Republic of Korea, Seoul, Korea. (in Korean)

31

NASA Earth Data. 2000. SRTM topographic dataset. https://www.earthdata.nasa.gov/data/instruments/srtm. Accessed 13 August 2024.

32

National Institute of Forest Science. 2018. Study of Climate change impact assessment and adaptation for forest ecosystems (II) (2015-2017). National Institute of Forest Science, Seoul, Korea. (in Korean)

33

Oh, J., Han, A.R., Kim, Y., and Hong, S. 2024. Expanded bioclimatic variables extracted from monthly climate predictions under the SSP climate scenarios over South Korea. GEO DATA 6: 1-13. (in Korean)

10.22761/GD.2024.0018
34

Open MET Data Portal. 2021. High resolution grid wind direction dataset. https://data.kma.go.kr/cmmn/main.do. Accessed 14 August 2024.

35

Pacifici, M., Foden, W.B., Visconti, P., Watson, J.E., Butchart, S.H., Kovacs, K.M., Scheffers, B.R., Hole, D.G., Martin, T.G., Akçakaya H.R., Corlett, R.T., Huntley, B., Bickford, D., Carr, J.A., Hoffmann, A.A., Midgley, G.F., Pearce-Kelly, P., Pearson, R.G., Williams, S.E., Willis, S.G., Young, B., and Rondinini, C. 2015. Assessing species vulnerability to climate change. Nature Climate Change 5(3): 215-224.

10.1038/nclimate2448
36

Park, H., Lee, J., Lee. G., and Um, G. 2015. Environmental features of the distribution areas and climate sensitivity assessment of Korean Fir and Khinghan Fir. Journal of Environmental Impact Assessment 24(3): 260-277. (in Korean)

10.14249/eia.2015.24.3.260
37

Park, J.H., Seo, H.N., Han, J., Park, C., Park, J., and Lim, H.I. 2024. Impact of environmental conditions on the early growth of the endangered Korean fir (Abies koreana EH Wilson): insights for conservation and restoration strategies. Forest Science and Technology 20(4): 1-9.

10.1080/21580103.2024.2406816
38

Park, J.S., Shin, H.S., Choi, C.H., Lee, J., and Kim, J. 2018. Hierarchical environmental factors affecting the distribution of Abies koreana on the Korean Peninsula. Forests 9(12): 777.

10.3390/f9120777
39

Park, S.U., Koo, K.A., and Kong, W. 2019. Climate-related range shifts of climate-sensitive biological indicator species in the Korean Peninsula: A role of dispersal capacity. Journal of Climate Change Research 10: 185-198. (in Korean)

10.15531/KSCCR.2019.10.3.185
40

Randin, C.F., Ashcroft, M.B., Bolliger, J., Cavender-Bares, J., Coops, N.C., Dullinger, S., Dirnböck, T., Eckert, S., Ellis, E., Fernández, N., Giuliani, G., Guisan, A., Jetz, W., Joost, S., Karger, D., Lembrechts, J., Lenoir, J., Luoto, M., Morin, X., Price, B., Rocchini, D., Schaepman, M., Schmid, B., Verburg, P., Wilson, A., Woodcock, P., Yoccoz, N., and Payne, D. 2020. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment 239: 111626.

10.1016/j.rse.2019.111626
41

Rodriguez-Galiano, V.F., Luque-Espinar, J.A., Chica-Olmo, M., and Mendes, M.P. 2018. Feature selection approaches for predictive modelling of groundwater nitrate pollution: An evaluation of filters, embedded and wrapper methods. Science of the Total Environment 624: 661-672.

10.1016/j.scitotenv.2017.12.15229272835
42

Seo, J.W., Choi, E.B., Park, J.H., Kim, Y.J., and Lim, H.I. 2021. The role of aging and wind in inducing death and/or growth reduction in Korean fir (Abies koreana Wilson) on Mt. Halla, Korea. Atmosphere 12(9): 1135.

10.3390/atmos12091135
43

Synes, N.W., and Osborne, P.E. 2011. Choice of predictor variables as a source of uncertainty in continental‐scale species distribution modelling under climate change. Global Ecology and Biogeography 20(6): 904-914.

10.1111/j.1466-8238.2010.00635.x
44

Urbanowicz, R.J., Meeker, M., La Cava, W., Olson, R.S., and Moore, J.H. 2018. Relief-based feature selection: Introduction and review. Journal of Biomedical Informatics 85: 189-203.

10.1016/j.jbi.2018.07.01430031057PMC6299836
45

Water Environment Information System. 2015. Korean Reach File version3 dataset. https://water.nier.go.kr/web. Accessed 24 July 2024.

46

Wolf, A. 2011. Estimating the potential impact of vegetation on the water cycle requires accurate soil water parameter estimation. Ecological Modelling 222(15): 2595-2605.

10.1016/j.ecolmodel.2011.04.031
47

Yu, L. and Liu, H. 2003. Feature selection for high-dimensional data: A fast correlation-based filter solution. Proceedings of the 20th international conference on machine learning, Washington DC, USA, pp. 856-863.

Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 11
  • No :4
  • Pages :229-243
  • Received Date : 2024-12-10
  • Revised Date : 2024-12-23
  • Accepted Date : 2024-12-24