All Issue

2024 Vol.11, Issue 2

Original Article

30 June 2024. pp. 23-34
Abstract
References
1

Battin, T.J., Besemer, K., Bengtsson, M.M., Romani, A. M., and Packmann, A.I. 2016. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology 14(4): 251-263.

10.1038/nrmicro.2016.1526972916
2

Beaulieu, J.J., Tank, J.L., Hamilton, S.K., Wollheim, W. M., Hall Jr, R.O., Mulholland, P.J., ... and Thomas, S.M. 2011. Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences 108(1): 214-219.

10.1073/pnas.101146410821173258PMC3017147
3

Boulton, A.J. 1993. Stream ecology and surface-hyporheic hydrologic exchange: implications, techniques and limitations. Marine and Freshwater Research, 44(4): 553-564.

10.1071/MF9930553
4

Boulton, A.J., Findlay, S., Marmonier, P., Stanley, E.H., and Valett, H.M. 1998. The functional significance of the hyporheic zone in streams and rivers. Annual review of Ecology and systematics 29(1): 59-81.

10.1146/annurev.ecolsys.29.1.59
5

Cardenas, M.B. 2015. Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resources Research 51(5): 3601-3616.

10.1002/2015WR017028
6

Cui, Y.W., Peng, Y.Z., Peng, C.Y., Gan, X.Q., and Ye, L. 2006. Achieving biological nitrogen removal via nitrite by salt inhibition. Water Science and Technology 53(6): 115-122.

10.2166/wst.2006.18316749447
7

Feng, L., Zhang, Z., Yang, G., Wu, G., Yang, Q., and Chen, Q. 2023. Microbial communities and sediment nitrogen cycle in a coastal eutrophic lake with salinity and nutrients shifted by seawater intrusion. Environmental Research 225: 115590.

10.1016/j.envres.2023.11559036863651
8

Fernald, A.G., Wigington Jr, P.J., and Landers, D.H. 2001. Transient storage and hyporheic flow along the Willamette River, Oregon: Field measurements and model estimates. Water Resources Research 37(6): 1681-1694.

10.1029/2000WR900338
9

Findlay, S. 1995. Importance of surface-subsurface exchange in stream ecosystems: The hyporheic zone. Limnology and Oceanography 40(1): 159-164.

10.4319/lo.1995.40.1.0159
10

Franken, R.J., Storey, R.G., and Dudley Williams, D. 2001. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia 444: 183-195.

10.1023/A:1017598005228
11

Gardner, W.S., Seitzinger, S.P., and Malczyk, J.M. 1991. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: does ion pairing affect ammonium flux? Estuaries 14: 157-166.

10.2307/1351689
12

Gomez-Velez, J.D., Krause, S., and Wilson, J.L. 2014. Effect of low‐permeability layers on spatial patterns of hyporheic exchange and groundwater upwelling. Water Resources Research 50(6): 5196-5215.

10.1002/2013WR015054
13

Holmes, R.M. 2000. The importance of ground water to stream ecosystem function, In Streams and Ground Waters, Academic Press.

10.1016/B978-012389845-6/50006-5
14

Holt, J.G., Krieg, N.R., Sneath, P.H., Staley, J.T., and Williams, S.T. 1994. Bergey's manual of determinate bacteriology.

15

Hyun, Y.J. and Kim, Y.S. 2013. Environmental aspects and management of hyporheic zones, Korea Environment Institute.

16

Jeon, W.H., Kim, D.H., Lee, S.H., Hwang, S., Moon, H.S., and Kim, Y. 2021. Hydrogeological Characterization of Groundwater and Surface Water Interactions in Fresh- Saline Water Mixed Zone of the East Coast Lagoon Area, Korea. Journal of Soil and Groundwater Environment 26(6): 144-156. (in Korean)

17

Jiang, Q., Jin, G., Tang, H., Xu, J., and Chen, Y. 2021. N2O production and consumption processes in a salinity‐impacted hyporheic zone. Journal of Geophysical Research: Biogeosciences 126(10): e2021JG006512.

10.1029/2021JG006512
18

Kaufman, M.H., Cardenas, M.B., Buttles, J., Kessler, A.J., and Cook, P.L. 2017. Hyporheic hot moments: Dissolved oxygen dynamics in the hyporheic zone in response to surface flow perturbations. Water Resources Research 53(8): 6642-6662.

10.1002/2016WR020296
19

Kim, H.G. and Ahn, D.H. 2019. Effects on Microbial Activity of Aerobic Granular Sludge (AGS) in High-Salinity Wastewater. Journal of Environmental Science International 28(7): 629-637.

10.5322/JESI.2019.28.7.629
20

Kim, K.Y., Chon, C.M., Kim, T.H., Oh, J.H., Jeoung, J.H., and Park, S.K. 2006. Use of a temperature as a tracer to study stream-groundwater exchange in the hyporheic zone. Economic and Environmental Geology 39(5): 525-535. (in Korean)

21

Krause, S., Tecklenburg, C., Munz, M., and Naden, E. 2013. Streambed nitrogen cycling beyond the hyporheic zone: Flow controls on horizontal patterns and depth distribution of nitrate and dissolved oxygen in the upwelling groundwater of a lowland river. Journal of Geophysical Research: Biogeosciences 118(1): 54-67.

10.1029/2012JG002122
22

Kwak, S.J., Yoo, S.H., and Chang, J.I. (2005). Measuring the conservation value of lagoons: the case of Songji Lagoon. Ocean and Polar Research 27(2): 161-169. (in Korean)

10.4217/OPR.2005.27.2.161
23

Loehr, R. 1984. Pollution control for agriculture. Elsevier.

24

Lee, S.H. and Yu, K. 2011. Depositional environments of Holocene laminated layers in the core SJ99 collected from the Songjiho Lagoon on the eastern coast of Korea. Journal of the Geological Society of Korea 47(2): 123-137. (in Korean)

25

Peralta-Maraver, I., Reiss, J., and Robertson, A.L. 2018. Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Science of the Total Environment 610: 267-275.

10.1016/j.scitotenv.2017.08.03628803202
26

Poole, G.C., Stanford, J.A., Running, S.W., and Frissell, C.A. 2006. Multiscale geomorphic drivers of groundwater flow paths: subsurface hydrologic dynamics and hyporheic habitat diversity. Journal of the North American Benthological Society 25(2): 288-303.

10.1899/0887-3593(2006)25[288:MGDOGF]2.0.CO;2
27

Ray, N.E., Hancock, B., Brush, M.J., Colden, A., Cornwell, J., Labrie, M.S., ... and Fulweiler, R.W. 2021. A review of how we assess denitrification in oyster habitats and proposed guidelines for future studies. Limnology and Oceanography: Methods 19(10): 714-731.

10.1002/lom3.10456
28

Reeder, W.J., Quick, A.M., Farrell, T.B., Benner, S.G., Feris, K.P., and Tonina, D. 2018. Spatial and temporal dynamics of dissolved oxygen concentrations and bioactivity in the hyporheic zone. Water Resources Research 54(3): 2112-2128.

10.1002/2017WR021388
29

Schaper, J.L., Posselt, M., Bouchez, C., Jaeger, A., Nuetzmann, G., Putschew, A., ... and Lewandowski, J. 2019. Fate of trace organic compounds in the hyporheic zone: Influence of retardation, the benthic biolayer, and organic carbon. Environmental Science & Technology, 53(8): 4224-4234.

10.1021/acs.est.8b0623130905154
30

Strock, J.S. 2008. Ammonification. In Encyclopedia of ecology, five-volume set, Minnesota, USA, pp. 162-165, Elsevier Inc.

10.1016/B978-008045405-4.00256-1
31

Thibodeaux, L.J. and Boyle, J.D. 1987. Bedform-generated convective transport in bottom sediment. Nature 325(6102): 341-343.

10.1038/325341a0
32

Triska, F.J., Jackman, A.P., Duff, J.H., and Avanzino, R.J. 1994. Ammonium sorption to channel and riparian sediments: a transient storage pool for dissolved inorganic nitrogen. Biogeochemistry 26: 67-83.

10.1007/BF02182880
33

van Dijk, G., Nijp, J.J., Metselaar, K., Lamers, L.P., and Smolders, A.J. 2017. Salinity‐induced increase of the hydraulic conductivity in the hyporheic zone of coastal wetlands. Hydrological Processes 31(4): 880-890.

10.1002/hyp.11068
34

Wan, C., Yang, X., Lee, D.J., Liu, X., Sun, S., and Chen, C. 2014. Partial nitrification of wastewaters with high NaCl concentrations by aerobic granules in continuous-flow reactor. Bioresource Technology 152: 1-6.

10.1016/j.biortech.2013.10.11224269852
35

Wang, H., Gilbert, J.A., Zhu, Y., and Yang, X. 2018. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Science of the Total Environment 631: 1342-1349.

10.1016/j.scitotenv.2018.03.10229727958
36

Williams, D.D., Febria, C.M., and Wong, J.C. 2010. Ecotonal and other properties of the hyporheic zone. Fundamental and Applied Limnology 176(4): 349.

10.1127/1863-9135/2010/0176-0349
37

Xia, X., Zhang, S., Li, S., Zhang, L., Wang, G., Zhang, L., ... and Li, Z. 2018. The cycle of nitrogen in river systems: sources, transformation, and flux. Environmental Science: Processes & Impacts 20(6): 863-891.

10.1039/C8EM00042E29877524
38

Zhao, S., Zhang, B., Sun, X., and Yang, L. 2021. Hot spots and hot moments of nitrogen removal from hyporheic and riparian zones: A review. Science of the Total Environment 762: 144168.

10.1016/j.scitotenv.2020.14416833360457
39

Zheng, L., Cardenas, M.B., and Wang, L. 2016. Temperature effects on nitrogen cycling and nitrate removal‐production efficiency in bed form‐induced hyporheic zones. Journal of Geophysical Research: Biogeosciences 121(4): 1086-1103.

10.1002/2015JG003162
40

Zheng, L. and Bayani Cardenas, M. 2018. Diel stream temperature effects on nitrogen cycling in hyporheic zones. Journal of Geophysical Research: Biogeosciences 123(9): 2743-2760.

10.1029/2018JG004412
41

Zhou, N., Zhao, S., and Shen, X. 2014. Nitrogen cycle in the hyporheic zone of natural wetlands. Chinese Science Bulletin 59: 2945-2956.

10.1007/s11434-014-0224-7
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 11
  • No :2
  • Pages :23-34
  • Received Date : 2023-12-11
  • Revised Date : 2024-04-30
  • Accepted Date : 2024-05-03