All Issue

2023 Vol.10, Issue 4 Preview Page

Original Article

31 December 2023. pp. 107-115
Alexandrov, Y., Laronne, J.B., and Reid, I. 2007. Intra-vent and inter-seasonal behaviour of suspended sediment in flash floods of the semi-arid northern Negev, Israel. Geomorphology 85(1-2): 85-97. 10.1016/j.geomorph.2006.03.013
Asadollah, S.B.H.S., Sharafati, A., Motta, D., and Yaseen, Z.M. 2021. River water quality index prediction and uncertainty analysis: A comparative study of machine learning models. Journal of Environmental Chemical Engineering 9(1): 104599. 10.1016/j.jece.2020.104599
Chung, S.W. and Oh, J.K. 2006. River water temperature variations at upstream of Daecheong lake during rainfall events and development of prediction models. Journal of Korea Water Resources Association 39(1): 79-88. (in Korean) 10.3741/JKWRA.2006.39.1.079
Dietterich, T.G. 2000. Ensemble methods in machine learning. In International workshop on multiple classifier systems: 1-15. Berlin, Heidelberg: Springer Berlin Heidelberg. 10.1007/3-540-45014-9_1
Gu, K., Zhang, Y., and Qiao, J. 2020. Random forest ensemble for river turbidity measurement from space remote sensing data. IEEE Transactions on Instrumentation and Measurement 69(11): 9028-9036. 10.1109/TIM.2020.2998615
Han, J.W., Cho, Y.C., Lee, S.Y., Kim, S.H., and Kang, T.G. 2023. Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models. Journal of Korean Society on Water Environment 39(1). (in Korean)
Ministry of Environment (ME). 2022. Investigation of Pollution Sources in the Geum River watershed Tributaries and Research on Water Quality Improvement Measures. Ministry of Environment Geum River Basin Environmental Office pp. 1-29. (in Korean)
Iglesias, C., Martínez Torres, J., García Nieto, P.J., Alonso Fernández, J.R., Díaz Muñiz, C., Piñeiro, J.I., and Taboada, J. 2014. Turbidity prediction in a river basin by using artificial neural networks: a case study in northern Spain. Water Resources Management 28: 319-331. 10.1007/s11269-013-0487-9
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... and Liu, T.Y. 2017. Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems 30.
Kim, J.I., Choi, J.W., and An, K.G. 2014. Spatial and temporal variations of water quality in an urban Miho stream and some influences of the tributaries on the water quality. Journal of Environmental Science International 23(3): 433-445. (in Korean) 10.5322/JESI.2014.23.3.433
Kim, J.O. and Park, J.S. 2023. Evaluation of Multi-classification Model Performance for Algal Bloom Prediction Using CatBoost. Journal of Korean Society on Water Quality 39(1): 1-8. (in Korean)
Kumar, L., Afzal, M.S., and Ahmad, A. 2022. Prediction of water turbidity in a marine environment using machine learning: A case study of Hong Kong. Regional Studies in Marine Science 52: 102260. 10.1016/j.rsma.2022.102260
Kwon, S.B., Ahn, H.W., Kang, J.G., and Son, B.Y. 2004. Operation and diagnosis of DAF water treatment plant at highly turbid raw water. Journal of Korean Society of Water and Wastewater 18(2): 191-200. (in Korean)
Lemaître, G., Nogueira, F., and Aridas, C.K. 2017. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. The Journal of Machine Learning Research 18(1): 559-563.
Lin, W.W., Sung, S.S., Chen, L.C., Chung, H.Y., Wang, C.C., Wu, R.M., ... and Chang, H.L. 2004. Treating high-turbidity water using full-scale floc blanket clarifiers. Journal of Environmental Engineering 130(12): 1481-1487. 10.1061/(ASCE)0733-9372(2004)130:12(1481)
Lu, H. and Ma, X. 2020. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249: 126169. 10.1016/j.chemosphere.2020.12616932078849
National Institute of Environmental Research (NIER). 2023. Water Environment Information System, Accessed 10 June 2023. (in Korean)
Nasrabadi, T., Ruegner, H., Sirdari, Z.Z., Schwientek, M., and Grathwohl, P. 2016. Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water. Applied Geochemistry 68: 1-9. 10.1016/j.apgeochem.2016.03.003
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... and Duchesnay, É. 2011. Scikit-learn: Machine learning in Python. the Journal of Machine Learning Research 12: 2825-2830.
Sagi, O. and Rokach, L. 2018. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8(4): e1249. 10.1002/widm.1249
Schleiger, S.L. 2000. Use of an index of biotic integrity to detect effects of land uses on stream fish communities in west-central Georgia. Transactions of the American Fisheries Society 129(5): 1118-1133. 10.1577/1548-8659(2000)129<1118:UOAIOB>2.0.CO;2
Seo, S.D., Lee, J.Y., and Ha, S.R. 2011. Effect of Hydroelectric Power Plant Discharge on the Turbidity Distribution in Dae-Cheong Dam Reservoir. Journal of Environmental Impact Assessment 20(2): 227-234. (in Korean)
Shin, J.H., Lee, S.H., Kim, M.S., and Park, H.W. 2021. Imbalanced data augmentation for algal blooming warning AI. J. Inf. Technol. Appl. Eng. 11: 15-23. (in Korean)
Uyun, S. and Sulistyowati, E. 2020. Feature selection for multiple water quality status: Integrated bootstrapping and SMOTE approach in imbalance classes. International Journal of Electrical and Computer Engineering 10(4): 4331. 10.11591/ijece.v10i4.pp4331-4339
Water Resources Management Information System (WAMIS). 2023. Accessed 10 June 2023. (in Korean)
Xu, T., Coco, G., and Neale, M. 2020. A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning. Water Research 177: 115788. 10.1016/j.watres.2020.11578832330740
Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., and Si, Y. 2018. A data-driven design for fault detection of wind turbines using random forests and XGboost. Ieee Access 6: 21020-21031. 10.1109/ACCESS.2018.2818678
Zounemat‐Kermani, M., Alizamir, M., Fadaee, M., Sankaran Namboothiri, A., and Shiri, J. 2021. Online sequential extreme learning machine in river water quality (turbidity) prediction: a comparative study on different data mining approaches. Water and Environment Journal 35(1): 335-34 10.1111/wej.12630
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 10
  • No :4
  • Pages :107-115
  • Received Date : 2023-08-31
  • Revised Date : 2023-10-09
  • Accepted Date : 2023-10-24