All Issue

2021 Vol.8, Issue 3 Preview Page

Original Article

September 2021. pp. 143-153
Abstract
References
1
Amé, M.V., Galanti, L.N., Menone, M.L., Gerpe, M.S., Moreno, V.J. and Wunderlin, D.A. 2010. Microcystin-LR,-RR,-YR and-LA in water samples and fishes from a shallow lake in Argentina. Harmful Algae 9(1): 66-73. 10.1016/j.hal.2009.08.001
2
Byeon, K.D., Kim, G.Y., Lee, I.J., Lee, S., Park, J.R., Hwang, T.M. and Joo, J.C. 2016. Investigation and Evaluation of Algae Removal Technologies Applied in Domestic Rivers and Lakes. Journal of Korean Society Environmental Engineers 38(7): 387-394. 10.4491/KSEE.2016.38.7.387
3
Carmichael, W.W. 1992. Cyanobacteria secondary metabolites-the cyanotoxins. Journal of applied bacteriology 72(6): 445-459. 10.1111/j.1365-2672.1992.tb01858.x1644701
4
Chen, G., Ding, X. and Zhou, W. 2020. Study on ultrasonic treatment for degradation of Microcystins (MCs). Ultrasonics sonochemistry 63: 104900. 10.1016/j.ultsonch.2019.10490031945576
5
Codd, G.A., Morrison, L.F. and Metcalf, J.S. 2005. Cyanobacterial toxins: risk management for health protection. Toxicology and applied pharmacology 203(3): 264-272. 10.1016/j.taap.2004.02.01615737680
6
Dehghani, M. H. 2016. Removal of cyanobacterial and algal cells from water by ultrasonic waves-A review. Journal of molecular liquids 222: 1109-1114. 10.1016/j.molliq.2016.08.010
7
Dittmann, E. and Wiegand, C. 2006. Cyanobacterial toxins-occurrence, biosynthesis and impact on human affairs. Molecular nutrition & food research 50(1): 7-17. 10.1002/mnfr.200500162
8
Fan, G., Zhang, Z., Luo, J., Wan, X. and Liu, C., 2013. Response Surface Design for the Optimization of the Removal of Chlorella pyrenoidosa Low Frequency Ultrasonic Irradiation. Asian Journal of Chemistry 25: 202-208. 10.14233/ajchem.2013.12891
9
Griffith, A.W. and Gobler, C.J. 2020. Harmful algal blooms: a climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 91: 101590. 10.1016/j.hal.2019.03.00832057338
10
Hao, H., Wu, M., Chen, Y., Tang, J. and Wu, Q. 2004. Cavitation mechanism in cyanobacterial growth inhibition by ultrasonic irradiation. Colloids and Surfaces B: Biointerfaces 33: 151-156. 10.1016/j.colsurfb.2003.09.003
11
Huang, Y.R., Li, L., Wei, X.M., Li, H.Z., Zeng, J.Y. and Kuang, R. 2020. An investigation of mechanisms for the enhanced coagulation removal of Microcystis aeruginosa by low-frequency ultrasound under different ultrasound energy densities. Ultrasonics Sonochemistry 69: 105278. 10.1016/j.ultsonch.2020.10527832738454
12
Hudder, A., Song, W., O'Shea, K.E. and Walsh, P.J. 2007. Toxicogenomic evaluation of microcystin-LR treated with ultrasonic irradiation. Toxicology and applied pharmacology 220(3): 357-364. 10.1016/j.taap.2007.02.00417383702PMC1971717
13
Jachlewski, S., Botes, M. and Cloete, T.E. 2013. The effect of ultrasound at 256 KHz on Microcystis aeruginosa, with and without gas vacuoles. Water SA 39(1): 171-172. 10.4314/wsa.v39i1.17
14
Joo, J.C., Kim, G.Y., Lee, M.J., Ahn, C.H., Lee, S., Park, J.R. and Kim, J.K. 2020. Growth Inhibition of Microcystis aeruginosa Using TiO2-Embedded Expanded Polystyrene Balls. Journal of nanoscience and nanotechnology 20(9): 5775-5779. 10.1166/jnn.2020.1763732331178
15
Kim, G.Y., Joo, J.C., Lee, M.J., Park, J.R., Ahn, C.H. and Lee, S. 2019. Evaluation on Growth Inhibition Effect of Harmful Blue Green Algae Using TiO2-embedded Expanded Polystyrene (TiEPS) Balls: Lab-scale Indoor/ Outdoor Experiments. Journal of Korean Society Environmental Engineers 41(11): 637-646. (in Korean) 10.4491/KSEE.2019.41.11.637
16
Kong, Y., Peng, Y., Zhang, Z., Zhang, M. and Zhou, Y., Duan, Z. 2019. Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter. Ultrasonics sonochemistry 56: 447-457. 10.1016/j.ultsonch.2019.04.01731101283
17
Lee, M.J., Joo, J.C., Kim, G.Y., Park, J.R., Ahn, C.H. and Lee, S. 2019. Evaluation on Growth Inhibition Effect of Harmful Blue Green Algae Using TiO2-embedded Expanded Polystyrene (TiEPS) Balls: River/Reservoir Mesocosms. Journal of Korean Society Environmental Engineers 41(11): 647-656. (in Korean) 10.4491/KSEE.2019.41.11.647
18
Lee, Y., Kim, I.H. and Moon, H.B. 2020. Perception Trend Analysis on Harmful Algae Bloom from a Large-scale Text Big Data. The Korean Association of Political Science & Communication 23.1: 201-222. (in Korean) 10.15617/psc.2020.2.28.1.201
19
Lee, H.K., Kim, J.H., Yoo, S.A., Ahn, T.S., Kim, C.K. and Lee, D.H. 2003. Primer Evaluation for the Detection of Toxigenic Microcystis by PCR. Korean Journal of Microbiology 39(3): 166-174. 656. (in Korean)
20
Lee, H.J., Park, H.K., Heo, J., Lee, H.J. and Hong, D.G. 2018. Colonial Cyanobacteria, Microcystis Cell Density Variations using Ultrasonic Treatment. Journal of Korean Society on Water Environment 34: 210-215.
21
Li, P., Song, Y. and Yu, S. 2014. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms. water research 62: 241-248. 10.1016/j.watres.2014.05.05224960124
22
Ma, B., Chen, Y., Hao, H., Wu, M., Wang, B., Lv, H. and Zhang, G. 2005. Influence of ultrasonic field on microcystins produced by bloom-forming algae. Colloids and Surfaces B: Biointerfaces 41(2-3): 197-201. 10.1016/j.colsurfb.2004.12.01015737547
23
Ministry of Environment. 2016. Algal bloom, What is the algal bloom?
24
NIER. 2007. A study on the production and behavior of cyanobacterial toxin.
25
Paerl, H.W. and Otten, T.G. 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial ecology 65(4): 995-1010. 10.1007/s00248-012-0159-y23314096
26
Park, J., Church, J., Son, Y., Kim, K.T. and Lee, W.H. 2017. Recent advances in ultrasonic treatment: challenges and field applications for controlling harmful algal blooms (HABs). Ultrasonics sonochemistry 38: 326-334. 10.1016/j.ultsonch.2017.03.00328633833
27
Park, Y.M., Kown, O.C., Park, J.W., Chung, G.Y., Lee, J.E. and Seo, E.W., 2013. Effects of Low Powered Ultrasonic Wave Exposure on Microcystis sp. (Cyanobacteria). Korean Journal of Environmental Biology 31(2): 113-120. (in Korean) 10.11626/KJEB.2013.31.2.113
28
Peng, Y., Zhang, Z., Kong, Y., Li, Y., Zhou, Y., Shi, X. and Shi, X. 2020. Effects of ultrasound on Microcystis aeruginosa cell destruction and release of intracellular organic matter. Ultrasonics sonochemistry 63: 104909. 10.1016/j.ultsonch.2019.10490931945559
29
Purcell, D., Parsons, S.A. and Jefferson, B., 2013. The influence of ultrasound frequency and power, on the algal species Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus and Melosira sp.. Environmental technology 34. 17: 2477-2490. 10.1080/09593330.2013.77335524527608
30
Rajasekhar, P., Fan, L., Thang, N. and Roddick, F.A. 2012. A review of the use of sonication to control cyanobacterial blooms. Water Research 46: 4319-4329. 10.1016/j.watres.2012.05.05422727861
31
Rodriguez-Molares, A., Dickson, S., Hobson, P., Haward, C., Zander, A., Brunch, M. 2014. Quantification of the ultrasound induced sedimentation of Microcystis aeruginosa. Ultrasonic Sonochemistry 21: 1299-1304. 10.1016/j.ultsonch.2014.01.02724636363
32
Sim, J.H., Seo, H.J. and Kwon, B.D. 2006. Study on effect of algae removal using ultrasonic waves in double cisterns. Journal of Korean Society Environmental Engineers 28: 1310-1315. (in Korean)
33
Sivonen, K. 1999. Cyanobacterial toxins. Toxic Cyanobacteria in Water, A Guide to Their Health Consequences, Monitoring and Management.
34
Song, W. and O'Shea, K.E. 2007. Ultrasonically induced degradation of 2-methylisoborneol and geosmin. Water research 41(12): 2672-2678. 10.1016/j.watres.2007.02.04117434560PMC3523298
35
Song, W., Teshiba, T., Rein, K. and O'Shea, K.E. 2005. Ultrasonically induced degradation and detoxification of microcystin-LR (cyanobacterial toxin). Environmental science & technology 39(16): 6300-6305. 10.1021/es048350z
36
Srisuksomwong, P., Peerapornpisal, Y., Nomura, N. and Whangchai, N. 2012. Comparative ultrasonic irradiation efficiency of Microcystis aeruginosa and M. wesenbergii from surface bloom and re-flotation behavior. Chiang Mai J. Sci 39(4): 731-735.
37
Wu, X., Joyce, E.M. and Mason, T.J. 2012. Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies. Water Research 46: 2851-2858. 10.1016/j.watres.2012.02.01922440593
38
Yamamoto, K., King, P.M., Wu, X., Mason, T.J. and Joyce, E.M. 2015. Effect of ultrasonic frequency and power on the disruption of algal cells. Ultrasonics Sonochemistry 24: 165-171. 10.1016/j.ultsonch.2014.11.00225465879
39
Zhang, G., Zhang, P., Wang, B. and Liu, H., 2006. Ultrasonic frequency effects on the removal of Microcystis aeruginosa. Ultrasonics Sonochemistry 13: 446-450. 10.1016/j.ultsonch.2005.09.01216360333
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 8
  • No :3
  • Pages :143-153
  • Received Date :2021. 09. 07
  • Revised Date :2021. 09. 28
  • Accepted Date : 2021. 09. 29