Original Article
Bao, Y., Chen, Z., Wei, S., Xu, Y., Tang, Z., and Li, H. 2019. The state of the art of data science and engineering in structural health monitoring. Engineering 5(2): 234-242.
10.1016/j.eng.2018.11.027Cha, Y.J., Ali, R., Lewis, J., and Büyükӧztürk, O. 2024. Deep learning-based structural health monitoring. Automation in Construction 161: 105328.
10.1016/j.autcon.2024.105328Fan, X., Cao, P., Shi, P., Wang, J., Xin, Y., and Huang, W. 2021. A nested unet with attention mechanism for road crack image segmentation. In 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), pp. 189-193.
10.1109/ICSIP52628.2021.9688782Feng, C., Zhang, H., Wang, H., Wang, S., and Li, Y. 2020. Automatic pixel-level crack detection on dam surface using deep convolutional network. Sensors 20(7): 2069.
10.3390/s2007206932272652PMC7180706Fukushima, K. 1980. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics 36(4): 193-202.
10.1007/BF003442517370364Huang, B., Zhao, S., and Kang F. 2023. Image-based automatic multiple-damage detection of concrete dams using region-based convolutional neural networks. Journal of Civil Structural Health Monitoring 13: 413-429.
10.1007/s13349-022-00650-9Krizhevsky, A., Sutskever, I., and Hinton, G.E. 2012. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, pp. 1097-1105.
LeCun, Y., Bengio, Y., and Hinton, G. 2015. Deep learning. Nature 521(7553): 436-444.
10.1038/nature1453926017442LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11): 2278-2324.
10.1109/5.726791Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. 2017. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117-2125.
10.1109/CVPR.2017.106PMC5744014Matarneh, S., Elghaish, F., Rahimian, F.P., Abdellatef, E., and Abrishami, S. 2024. Evaluation and optimization of pre-trained CNN models for asphalt pavement crack detection and classification. Automation in Construction 160: 105297.
10.1016/j.autcon.2024.105297Ozgenel, Ç.F. and Sorguc A.G. 2018. Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In Isarc. Proceedings of the International Symposium on Automation and Robotics In Construction 35: 1-8.
10.22260/ISARC2018/0094Ronneberger, O., Fischer, P., and Brox, T. 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Springer International Publishing, Munich, Germany, pp. 234-241.
10.1007/978-3-319-24574-4_28Tomaszkiewicz, K. and Owerko, T., 2023. A pre-failure narrow concrete cracks dataset for engineering structures damage classification and segmentation, Scientific Data 10(1): 925
10.1038/s41597-023-02839-z38129453PMC10739794- Publisher :Korean Society of Ecology and Infrastructure Engineering
- Publisher(Ko) :응용생태공학회
- Journal Title :Ecology and Resilient Infrastructure
- Journal Title(Ko) :응용생태공학회 논문집
- Volume : 11
- No :4
- Pages :177-185
- Received Date : 2024-12-06
- Revised Date : 2024-12-17
- Accepted Date : 2024-12-18
- DOI :https://doi.org/10.17820/eri.2024.11.4.177