All Issue

2024 Vol.11, Issue 4 Preview Page

Original Article

31 December 2024. pp. 177-185
Abstract
References
1

Bao, Y., Chen, Z., Wei, S., Xu, Y., Tang, Z., and Li, H. 2019. The state of the art of data science and engineering in structural health monitoring. Engineering 5(2): 234-242.

10.1016/j.eng.2018.11.027
2

Cha, Y.J., Ali, R., Lewis, J., and Büyükӧztürk, O. 2024. Deep learning-based structural health monitoring. Automation in Construction 161: 105328.

10.1016/j.autcon.2024.105328
3

Fan, X., Cao, P., Shi, P., Wang, J., Xin, Y., and Huang, W. 2021. A nested unet with attention mechanism for road crack image segmentation. In 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), pp. 189-193.

10.1109/ICSIP52628.2021.9688782
4

Feng, C., Zhang, H., Wang, H., Wang, S., and Li, Y. 2020. Automatic pixel-level crack detection on dam surface using deep convolutional network. Sensors 20(7): 2069.

10.3390/s2007206932272652PMC7180706
5

Fukushima, K. 1980. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics 36(4): 193-202.

10.1007/BF003442517370364
6

Huang, B., Zhao, S., and Kang F. 2023. Image-based automatic multiple-damage detection of concrete dams using region-based convolutional neural networks. Journal of Civil Structural Health Monitoring 13: 413-429.

10.1007/s13349-022-00650-9
7

Krizhevsky, A., Sutskever, I., and Hinton, G.E. 2012. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, pp. 1097-1105.

8

LeCun, Y., Bengio, Y., and Hinton, G. 2015. Deep learning. Nature 521(7553): 436-444.

10.1038/nature1453926017442
9

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11): 2278-2324.

10.1109/5.726791
10

Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. 2017. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117-2125.

10.1109/CVPR.2017.106PMC5744014
11

Matarneh, S., Elghaish, F., Rahimian, F.P., Abdellatef, E., and Abrishami, S. 2024. Evaluation and optimization of pre-trained CNN models for asphalt pavement crack detection and classification. Automation in Construction 160: 105297.

10.1016/j.autcon.2024.105297
12

Ozgenel, Ç.F. and Sorguc A.G. 2018. Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In Isarc. Proceedings of the International Symposium on Automation and Robotics In Construction 35: 1-8.

10.22260/ISARC2018/0094
13

Ronneberger, O., Fischer, P., and Brox, T. 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Springer International Publishing, Munich, Germany, pp. 234-241.

10.1007/978-3-319-24574-4_28
14

Tomaszkiewicz, K. and Owerko, T., 2023. A pre-failure narrow concrete cracks dataset for engineering structures damage classification and segmentation, Scientific Data 10(1): 925

10.1038/s41597-023-02839-z38129453PMC10739794
15

Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., and Ling, H. 2019. Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Transactions on Intelligent Transportation Systems 21(4): 1525-1535.

10.1109/TITS.2019.2910595
16

Zhang, L., Yang, F., Zhang, Y.D., and Zhu, Y.J. 2016. Road crack detection using deep convolutional neural network. In 2016 IEEE International Conference on Image Processing (ICIP), pp. 3708-3712.

10.1109/ICIP.2016.7533052
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 11
  • No :4
  • Pages :177-185
  • Received Date : 2024-12-06
  • Revised Date : 2024-12-17
  • Accepted Date : 2024-12-18