All Issue

2024 Vol.11, Issue 3

Original Article

30 September 2024. pp. 65-77
Abstract
References
1

Almaroai, Y.A., Usman, A.R., Ahmad, M., Kim, K.R., Moon, D.H., Lee, S.S., and Ok, Y.S. 2012. Effects of synthetic chelators and low-molecular-weight organic acids on chromium, copper, and arsenic uptake and translocation in maize (Zea mays L.). Soil Science 177(11): 655-663.

10.1097/SS.0b013e31827ba23f
2

Ash, C., Tejnecký, V., Borůvka, L., and Drábek, O. 2016. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil. Journal of Contaminant Hydrology 187: 18-30.

10.1016/j.jconhyd.2016.01.009
3

Del Rio, M., Font, R., Almela, C., Vélez, D., Montoro, R., and Bailón, A.D.H. 2002. Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcóllar mine. Journal of Biotechnology 98: 125-137.

10.1016/S0168-1656(02)00091-3
4

Diaz, O.P., Tapia, Y., Pastene, R., Cazanga, M., Segura, R., and Peredo, S. 2016. Lupinus microcarpus growing in arsenic-agricultural soils from Chile: Toxic effects and it potential use as phytoremediator plant. Journal of Environmental Protection 7(1): 116-128.

10.4236/jep.2016.71011
5

Finnegan, P.M. and Chen, W. 2012. Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology 3: 182.

10.3389/fphys.2012.00182
6

Francesconi, K., Visoottiviseth, P., Sridokchan, W., and Goessleer, W. 2002. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediatorof arsenic-contaminated soils. The Science of the Total Environment 284: 27-35.

10.1016/S0048-9697(01)00854-3
7

Gisbert, C., Almela, C., Velez, D., Lopez-Moya, J.R., de Haro, A., and Serrano, R., 2008. Identification of As accumulation plant species growing on highly contaminated soils. International Journal of Phytoremediation 10(3): 183-194.

10.1080/15226510801997457
8

Holliday, V.T. 1986. Methods of Soil Analysis, part 1, Physical and Mineralogical Methods, In, Klute, A. (eds.), American Society of Agronomy, Agronomy Monographs Madison, Wisconsin, USA, 9(1).

9

Huang, Z., An, Z., Chen, T., Lei, M., Xiao, X., Liao, X. 2007. Arsenic uptake and transport of Pteris vittata L. as influenced by phosphate and inorganic arsenic species under sand culture. Journal of Environmental Sciences 19(6): 714-718.

10.1016/S1001-0742(07)60119-3
10

Jeong, S., An, J., Kim, Y.J., Kim, G., Choi, S.-I., Nam, K. 2011. Study on heavy metal contamination characteristics and plant bioavailability for soils in the Janghang smelter area. Journal of Soil & Groundwater Environment 16(1): 42-50. (in Korean)

10.7857/JSGE.2011.16.1.042
11

Jones, D.L., Dennis, P.G., Owen, A.G., and Van Hees, P.A.W. 2003. Organic acid behavior in soils-misconceptions and knowledge gaps. Plant and Soil 248: 31-41.

10.1007/978-94-010-0243-1_3
12

Kapaj, S., Peterson, H., Liber, K., and Bhattacharya, P. 2006. Human health effects from chronic arsenic poisoning - A review. Journal of Environmental Science and Health Part A 41: 2399-2428.

10.1080/10934520600873571
13

KECO (Korea Environment Corporation). 2008. Detailed Soil Survey Report for Former Janghang Smelter Area. (in Korean)

14

Kettler, T.A., Doran, J.W., and Gilbert, T.L. 2001. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Science Society of America Journal 65(3): 849-852.

10.2136/sssaj2001.653849x
15

Kim, E.J., Yoo, J.-C., Park, S.-M., Park, E.-R., and Baek, K. 2016. Distribution of arsenic and heavy metals in soil particle sizes in the areas affected by the former smelter. J. of the Korean Society for Environmental Analysis 19(1): 54-26. (in Korean)

16

Kim, J.W., Hong, Y.K., Lee, C.R., and Kim, S.C. 2023. Comparison of physicochemical and biological soil properties in organic and conventional upland fields. Korean Journal of Soil Science and Fertilizer 56(1): 77-89. (in Korean)

10.7745/KJSSF.2023.56.1.077
17

Krull, E.S., Skjemstad, J.O., and Baldock, J.A. 2004. Functions of Soil Organic Matter and the Effect on Soil Properties. Canberra, Cooperative Research Centre for Greenhouse Accounting.

18

Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymology 148C: 350-382.

10.1016/0076-6879(87)48036-1
19

Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., and Kennelley, E.D. 2001. A fern that hyperaccumulates arsenic. Nature 409(6820): 579-579.

10.1038/35054664
20

MOE (Ministry of the Environment). 2015. Risk Assessment Final Report: Pine Grove and Vegetated Area Near the Formal Janghang Smelter.

21

Mondal, P., Majumder, C.B., and Mohanty, B. 2006. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. Journal of Hazardous Material 137: 464-479.

10.1016/j.jhazmat.2006.02.023
22

Moon, S.-Y., Oh, M., Jung, J., Choi, S.-I., and Lee J.-Y. 2011. Assessment of soil washing efficiency for arsenic contaminated site adjacent to Jang Hang Refinery. Journal of Soil & Groundwater Environment 16: 71-81. (in Korean)

10.7857/JSGE.2011.16.1.071
23

NIBR (National Institute of Environmental Research). 2008. Study on Human Health Effects near the Former Smelter Area. (in Korean)

24

NIFS (National Institute of Forest Science). 2014. Soil and Plant Analytical Method, 11-1400377-000748-01. (in Korean)

25

Onireti, O.O. and Lin, C. 2016. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects. Chemosphere 147: 352-360.

10.1016/j.chemosphere.2015.12.129
26

Osmolovskaya, N., Dung, V.V., and Kuchaeva, L. 2018. The role of organic acids in heavy metal tolerance in plants. Biological Communications 63(1): 9-16.

10.21638/spbu03.2018.103
27

Pepper, I.L. and Gerba, C.P. 2004. Environmental Microbiology: A Laboratory Manual, 2nd Ed., Elsevier Academic Press, MA, USA.

28

Raab, A., Williams, P.N., Meharg, A., and Feldmann, J. 2007. Uptake and translocation of inorganic and methylated arsenic species by plants. Environmental Chemistry 4: 197-203.

10.1071/EN06079
29

Signes-Pastor, A.J., Munera-Picazo, S., Burl, F., Cano-Lamadrid, M., and Carbonell-Barrachina, A.A. 2015. Phytoremediation assessment of Gomphrena globosa and Zinnia elegans grown in arsenic-contaminated hydroponic conditions as a safe and feasible alternative to be applied in arsenic-contaminated soils of the Bengal Delt. Environmental Monitoring and Assessment 187: 1-9.

10.1007/s10661-015-4618-z
30

Srivastava, M., Ma, L.Q., and Santos, J.A.G. 2006. Three new arsenic hyperaccumulating ferns. Science of the Total Environment 364: 24-31.

10.1016/j.scitotenv.2005.11.002
31

Stafilov, T., Šajn, R., Pančevski, Z., Boev, B., Frontasyeva, M.V., and Strelkova, L.P. 2010. Heavy metal contamination of surface soils around a lead and zinc smelter in the Republic of Macedonia. Journal of Hazardous Material 175: 896-914.

10.1016/j.jhazmat.2009.10.094
32

Syu, C.H., Jiang, P.Y., Huang, H.H., Chen, W.T., Lin, T.H., and Lee, D.Y. 2013. Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter. Soil Science and Plant Nutrition 59(3): 463-471.

10.1080/00380768.2013.784950
33

Tiwari, K.K., Dwivedi, S., Mishra, S., Srivastava, S., Tripathi, R.D., Singh, N.K., and Chakraborty, S. 2008. Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra, Gujrat, India. Environmental Monitoring and Assessment 147: 15-22.

10.1007/s10661-007-0093-5
34

Tlustoš, P., Száková, J., Pavlíková, D., and Balík, J. 2006. The response of tomato (Lycopersicon esculentum) to different concentrations of inorganic and organic compounds of arsenic. Biologia 61(1): 91-96.

10.2478/s11756-006-0013-0
35

Tu, S. Ma, L., and Luongo, T. 2004. Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant and Soil 258: 9-19.

10.1023/B:PLSO.0000016499.95722.16
36

Van Hees, P.A.W., Vinogradoff, S.I., Edwards, A.C., Godbold, D.L., and Jones, D.L. 2003. Low molecular weight organic acid adsorption in forest soils: effects on soil solution concentrations and biodegradation rates. Soil Biology and Biochemistry 35(8): 1015-1026.

10.1016/S0038-0717(03)00144-5
37

Wenzel, W.W., Kirchbaumera, N., Prohaskab, T., Stingeder, G., Lombi E., and Adriano, D.C. 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta 436(2): 309-323.

10.1016/S0003-2670(01)00924-2
38

Wu, L., Kobayashi, Y., Wasaki, J., and Koyama, H. 2018. Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Science and Plant Nutrition 64(6): 697-704.

10.1080/00380768.2018.1537093
39

Wu, L.H., Luo, Y.M., Xing, X.R., and Christie, P. 2004. EDTA enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture. Ecosystems and Environment 102(3): 307-318.

10.1016/j.agee.2003.09.002
40

Yang, K., Kim, Y.-J., Im, J., and Nam K. 2014. Determination of human health risk incorporated with arsenic bioaccessibility and remediation goals at the former Janghang smelter site. Journal of Soil & Groundwater Environment 19(4): 52-61. (in Korean)

10.7857/JSGE.2014.19.4.052
41

Yoon, J., Cao, X., Zhou, Q., and Ma, L.Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368(2-3): 456-464.

10.1016/j.scitotenv.2006.01.016
42

Zemanová, V., Pavlíková, D., Hnilička, F., and Pavlík, M. 2021. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants 10(10): 2009.

10.3390/plants10102009
43

Zhao, F.J., Dunham, S.J., and McGrath, S.P. 2002. Arsenic hyperaccumulation by different fern species. New Phytologist 156: 27-31.

10.1046/j.1469-8137.2002.00493.x
44

Zhao, F.J., Ma, J.F., Meharg, A.A., and McGrath, S.P. 2009. Arsenic uptake and metabolism in plants. New Phytologist 181(4), 777-794.

10.1111/j.1469-8137.2008.02716.x
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 11
  • No :3
  • Pages :65-77
  • Received Date : 2024-03-20
  • Revised Date : 2024-06-07
  • Accepted Date : 2024-08-19