All Issue

2025 Vol.12, Issue 1 Preview Page

Review Article

31 March 2025. pp. 34-46
Abstract
References
1

Abobatta, W. 2018. Impact of hydrogel polymer in agricultural sector. Advances in Agriculture and Environmental Science 1: 59-64.

10.30881/aaeoa.00011
2

An, J.H., Jeong, H., and Kim, E. 2018. Effects of the β-glucan-and xanthan gum-based biopolymer on the performance of plants inhabiting in the riverbank. Ecology and Resilient Infrastructure 5(3): 180-188. (in Korean)

3

Arif, M.S., Yasmeen, T., Abbas, Z., Ali, S., Rizwan, M., Aljarba, N.H., Alkahtani, S., and Abdel-Daim, M.M. 2021. Role of exogenous and endogenous hydrogen sulfide (H2S) on functional traits of plants under heavy metal stresses: a recent perspective. Frontiers in Plant Science 11: 545453.

10.3389/fpls.2020.54545333488636PMC7817613
4

Baligar, V.C. 1998. Nature and distribution of acid soils in the world. Proceeding of the Workshop to Develop a Strategy for Collaborative Research and Dissemination of Technology in Sustainable Crop Production in Acid Savannas and Other Problem Soils of the World, Purdue University, West Lafayette, Indiana, USA. pp. 1-11.

5

Barbour, M.G., Burk, J.H., Pitts, W.D., Gilliam F.S., and Schwartz, M.W. 1998. Terrestrial plant ecology (3rd ed). Benjamin Cummings, San Francisco, USA.

6

Barkla, B.J. and Pantoja, O. 2010. Plasma membrane and abiotic stress. In, Murphy A.S., Schulz, B., and Peer W. (ed), The plant plasma membrane. Springer Berlin Heidelberg, Berlin, Germany. pp. 457-470.

10.1007/978-3-642-13431-9_21
7

Byeon, J.Y., Yun, S.J., and Lee, I.J. 2014. Samgo crop physiology: Hyangmunsa, Seoul, Korea. (in Korean)

8

Chang, I. and Cho, G.C. 2012. Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer. Construction and Building Materials 30: 30-35.

10.1016/j.conbuildmat.2011.11.030
9

Chang, I., Im, J., Prasidhi, A.K., and Cho, G.C. 2015a. Effects of xanthan gum biopolymer on soil strengthening. Construction and Building Materials 74: 65-72.

10.1016/j.conbuildmat.2014.10.026
10

Chang, I., Prasidhi, A.K., Im, J., Shin, H.D., and Cho, G.C. 2015b. Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 253: 39-47.

10.1016/j.geoderma.2015.04.006
11

Chen, C., Wu, L., and Harbottle, M. 2019. Influence of biopolymer gel-coated fibres on sand reinforcement as a model of plant root behaviour. Plant and Soil 438: 361-375.

10.1007/s11104-019-04033-w
12

Das, A., Ringu, T., Ghosh, S., and Pramanik, N. 2023. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polymer Bulletin 80(7): 7247-7312.

10.1007/s00289-022-04443-436043186PMC9409625
13

Dhillon, G.S., Kaur, S., Verma, M., and Brar, S.K. 2012. Biopolymer-based nanomaterials: potential applications in bioremediation of contaminated wastewaters and soils. Comprehensive Analytical Chemistry 59: 91-129.

10.1016/B978-0-444-56328-6.00003-7
14

Eapen, S. and D'souza, S. 2005. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances 23(2): 97-114.

10.1016/j.biotechadv.2004.10.00115694122
15

Gerngross, T., Slater, S., and Gross, R.A. 2003. Biopolymers and the environment. Science 299(5608): 822-825.

10.1126/science.299.5608.82212574603
16

Ghestem, M., Sidle, R.C., and Stokes, A., 2011. The influence of plant root systems on subsurface flow: implications for slope stability. Bioscience 61(11): 869-879.

10.1525/bio.2011.61.11.6
17

Gutiérrez, T.J. 2019. Polymers for agri-food applications. Springer International Publishing, Basel, Switzerland.

10.1007/978-3-030-19416-1
18

Huang, J., Kogbara, R.B., Hariharan, N., Masad, E.A., and Little, D. N. 2021. A state-of-the-art review of polymers used in soil stabilization. Construction and Building Materials 305: 124685.

10.1016/j.conbuildmat.2021.124685
19

Hutcheon, C., Ditt, R.F., Beilstein, M., Comai, L., Schroeder, J., Goldstein, E., Shewmaker, C.K., Nguyen, T., De Rocher, J., and Kiser, J. 2010. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biology 10: 1-15.

10.1186/1471-2229-10-23320977772PMC3017853
20

Hwang, W., Park, M., Hyun, S., Ji, W.H., and Lee, S.H. 2017. Evaluation of amending materials to reduce soil loss from sloping remediated agricultural land. Ecology and Resilient Infrastructure 4(3): 180-185. (in Korean)

21

Jeong, H., Jang, H.Y., Ahn S.J., and Kim, E. 2019. β-glucan- and xanthan gum-based biopolymers stimulated the growth of dominant plant species in the Korean riverbank. Ecology and Resilient Infrastructure 6(3): 163-170.

22

Jeong, H., Shin, H., Jang, H.Y., and Kim, E. 2020. Effects of β-glucan and xanthan gum-based biopolymers on plant growth and competition in the riverbank. Ecology and Resilient Infrastructure 7(3): 208-217.

23

Kim, H.S., Park, W., Lim, H.G., Eom, S., Lee, J.H., Carlson, J.E., and Ahn, S.J. 2019. NaCl-induced CsRCI2E and CsRCI2F interact with aquaporin CsPIP2;1 to reduce water transport in Camelina sativa L. Biochemical and Biophysical Research Communications 513(1): 213-218.

10.1016/j.bbrc.2019.03.20830954220
24

Kim, H.S., Shin, J.H., Lee, H.S., Kim, S., Jang, H.Y., Kim, E., and Ahn, S.J. 2022. CsRCI2D enhances high-temperature stress tolerance in Camelina sativa L. through endo-membrane trafficking from the plasma membrane. Plant Science 320: 111294.

10.1016/j.plantsci.2022.11129435643612
25

Kim, Y.O., Kim, H.S., Lim, H.G., Jang, H.Y., Kim, E., and Ahn, S.J. 2021. Functional characterization of salt-stress induced rare cold inducible gene from Camelina sativa (CsRCI2D). Journal of Plant Biology 65: 1-11.

10.1007/s12374-021-09313-6
26

Klein, M. and Poverenov, E. 2020. Natural biopolymer‐based hydrogels for use in food and agriculture. Journal of the Science of Food and Agriculture 100: 2337-2347.

10.1002/jsfa.1027431960453
27

Larson, S.L., Martin, W.A., Wade, R., Hudson, R.L., and Nestler, C.C. 2016. Technology transfer of biopolymer soil amendment for rapid revegetation and erosion control at Fort AP Hill, Virginia. US Army Engineer Research and Development Center, Vicksburg, Mississippi, USA.

28

Lim, H.G., Kim, H.S., Lee, H.S., Sin, J.H., Kim, E.S., Woo, H.S., and Ahn, S.J. 2018. Amended soil with biopolymer positively affects the growth of Camelina sativa L. under drought stress. Ecology and Resilient Infrastructure 5(3): 163-173. (in Korean)

29

Liu, Y., Ni, J., Gu, J., Liu, S., Huang, Y., and Sadeghi, H. 2024. Influence of biopolymer-vegetation interaction on soil hydro-mechanical properties under climate change: A review. Science of the Total Environment 176535.

10.1016/j.scitotenv.2024.17653539332716
30

Ma, J.F., Hiradate, S., Nomoto, K., Iwashita, T., and Matsumoto, H. 1997. Internal detoxification mechanism of Al in hydrangea (identification of Al form in the leaves). Plant Physiology 113(4): 1033-1039.

10.1104/pp.113.4.103312223659PMC158226
31

Matsumoto, H. 2000. Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology 200: 1-46.

10.1016/S0074-7696(00)00001-210965465
32

Mujtaba, M., Sharif, R., Ali, Q., Rehman, R., and Khawar, K.M. 2021. Biopolymer based nanofertilizers applications in abiotic stress (drought and salinity) control. In, Jogaiah S., Singh, H.B., Fraceto, L.F., and Lima R.D. (eds). Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture. Elsevier, Duxford, UK. pp. 85-110.

10.1016/B978-0-12-820092-6.00004-5
33

Orts, W.J., Sojka, R.E., and Glenn, G.M. 2000. Biopolymer additives to reduce erosion-induced soil losses during irrigation. Industrial Crops and Products 11(1): 19-29.

10.1016/S0926-6690(99)00030-8
34

Ozkur, O., Ozdemir, F., Bor, M., and Turkan, I. 2009. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environmental and Experimental Botany 66(3): 487-492.

10.1016/j.envexpbot.2009.04.003
35

Park, W., Han, K.H., and Ahn, S.J. 2012. Differences in root-to-shoot Cd and Zn translocation and by HMA3 and 4 could influence chlorophyll and anthocyanin content in Arabidopsis Ws and Col-0 ecotypes under excess metals. Soil Science and Plant Nutrition 58(3): 334-348.

10.1080/00380768.2012.684643
36

Pu, W., Shen, C., Wei, B., Yang, Y., and Li, Y. 2018. A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field. Journal of Industrial and Engineering Chemistry 61: 1-11.

10.1016/j.jiec.2017.12.034
37

Seo, S., Jin, S., Chang, I., and Chung, M. 2019. The analysis of effect of biopolymer treated soils in seed spray method in the river embankment. Ecology and Resilient Infrastructure 6(4): 304-313. (in Korean)

38

Seybold, C. 1994. Polyacrylamide review: Soil conditioning and environmental fate. Communications in Soil Science and Plant Analysis 25(11-12): 2171-2185.

10.1080/00103629409369180
39

Shin, J.H., Kim, H.S., Kim, E., and Ahn, S.J. 2020. Biopolymer amended soil reduces the damages of Zn excess in Camelina sativa L. Ecology and Resilient Infrastructure 7(4): 262-273. (in Korean)

40

Shin, J.H., Kim, H.S., Kim, S., Kim, E., Jang, H.Y., and Ahn, S.J. 2021. Xanthan gum reduces aluminum toxicity in Camelina roots. Ecology and Resilient Infrastructure 8(3): 135-142. (in Korean)

41

Shin, J.H., Kim, H.S., Seong, G.J., Park, W., and Ahn, S.J. 2023. The effect of soil amended with β-glucan under drought stress in Ipomoea batatas L. Ecology and Resilient Infrastructure 10: 64-72. (in Korean)

42

Sojka, R.E., Bjorneberg, D.L., Entry, J.A., Lentz, R.D., and Orts, W.J. 2007. Polyacrylamide in agriculture and environmental land management. Advances in Agronomy 92: 75-162.

10.1016/S0065-2113(04)92002-0
43

Soldo, A., Miletić, M., and Auad, M.L. 2020. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports 10(1): 267.

10.1038/s41598-019-57135-x31937816PMC6959266
44

Van de Velde, K. and Kiekens, P. 2002. Biopolymers: overview of several properties and consequences on their applications. Polymer Testing 21(4): 433-442.

10.1016/S0142-9418(01)00107-6
45

Verslues, P.E., Bailey-Serres, J., Brodersen, C., Buckley, T.N., Conti, L., Christmann, A., Dinneny, J.R., Grill, E., Hayes, S., Heckman, R.W., and Hsu, P.K. 2023. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. The Plant Cell 35(1): 67-108.

10.1093/plcell/koac26336018271PMC9806664
46

Wilson, P.J., Thompson, K.E.N., and Hodgson, J.G. 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. The New Phytologist 143: 155-162.

10.1046/j.1469-8137.1999.00427.x
47

Zhang, Y., Deng, G., Fan, W., Yuan, L., Wang, H., and Zhang, P. 2019. NHX1 and eIF4A1-stacked transgenic sweetpotato shows enhanced tolerance to drought stress. Plant Cell Reports 38: 1427-1438.

10.1007/s00299-019-02454-631396684
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 12
  • No :1
  • Pages :34-46
  • Received Date : 2025-02-02
  • Revised Date : 2025-02-17
  • Accepted Date : 2025-02-17