All Issue

2025 Vol.12, Issue 3

Original Article

30 September 2025. pp. 127-140
Abstract
References
1

Abrahms, B., Jordan, N.R., Golabek, K.A., McNutt, J.W., Wilson, A.M., and Brashares, J.S. 2016. Lessons from integrating behaviour and resource selection: activity‐specific responses of A frican wild dogs to roads. Animal Conservation 19: 247-255. (in Korean)

10.1111/acv.12235
2

Adriaensen, F., Chardon, J.P., De Blust, G., Swinnen, E., Villalba, S., Gulinck, H., et al. 2003. The application of ‘least-cost’modelling as a functional landscape model. Landscape and urban planning 64: 233-247.

10.1016/S0169-2046(02)00242-6
3

Borchers, D.L. and Efford, M.G., 2008. Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64: 377-385.

10.1111/j.1541-0420.2007.00927.x
4

Cho, C.-U., Gyun, G.-H., Yang, J.-J., Lim, S.-J., Lee, A.-N., Park, H.-B., et al. 2014. Home Range and Behavioral Characteristics of the Endangered Korea Gorals (Naemorhedus caudatus) With GPS Collar. Korean Journal of Environment and Ecology 28: 1-9 (in Korean).

10.13047/KJEE.2014.28.1.1
5

Cho, C.-U., Kim, K.-Y., Kim, K.-C., Kim, H.-M., An, J.-Y., Lee, B.-K., et al. 2015. Home Range Analysis of a Pair of Gorals (Naemorhedus caudatus) Using GPS Collar According to the Elevation Change, in the North Gyeongbuk Province(Uljin) of Korea. Journal of the Korean Association of Geographic Information Studies 18: 135-146 (in Korean).

10.11108/kagis.2015.18.1.135
6

Csardi, G. and Nepusz, T. 2006. The igraph software. Complex Syst. 1695: 1-9.

7

Cushman, S.A., McKelvey, K.S., Hayden, J., and Schwartz, M.K. 2006. Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling. The American Naturalist 168: 486-499 (in Korean).

10.1086/506976
8

Delisle, Z.J., Flaherty, E.A., Nobbe, M.R., Wzientek, C.M., and Swihart, R.K. 2021. Next-Generation Camera Trapping: Systematic Review of Historic Trends Suggests Keys to Expanded Research Applications in Ecology and Conservation. Frontiers in Ecology and Evolution 9.

10.3389/fevo.2021.617996
9

Dutta, T., Sharma, S., McRae, B.H., Roy, P.S., and DeFries, R. 2016. Connecting the dots: mapping habitat connectivity for tigers in central India. Regional Environmental Change 16: 53-67.

10.1007/s10113-015-0877-z
10

Efford, M. 2004. Density estimation in live‐trapping studies. Oikos 106: 598-610. (in Korean)

10.1111/j.0030-1299.2004.13043.x
11

Elith, J. and Leathwick, J.R., 2009. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics 40: 677-697.

10.1146/annurev.ecolsys.110308.120159
12

Farine, D.R. and Whitehead, H., 2015. Constructing, conducting and interpreting animal social network analysis. Journal of Animal Ecology 84: 1144-1163.

10.1111/1365-2656.1241826172345PMC4973823
13

Gilbert, N.A., Clare, J.D.J., Stenglein, J.L., and Zuckerberg, B. 2021. Abundance estimation of unmarked animals based on camera-trap data. Conservation Biology: The Journal of the Society for Conservation Biology 35: 88-100.

10.1111/cobi.13517
14

Gray, T.N.E. 2018. Monitoring tropical forest ungulates using camera‐trap data. Journal of Zoology 305: 173- 179.

10.1111/jzo.12547
15

Hijmans, R.J. 2018. raster: Geographic data analysis and modeling. R package version 2: 8.

16

Holme, P. and Saramäki, J. 2012. Temporal networks. Physics Reports 519: 97-125.

10.1016/j.physrep.2012.03.001
17

Howe, E.J., Potter, D., Beauclerc, K.B., Jackson, K.E., and Northrup, J.M., 2022. Estimating animal abundance at multiple scales by spatially explicit capture-recapture. Ecological Applications 32: e2638.

10.1002/eap.263835441452PMC9788300
18

Iijima, H. 2020. A review of wildlife abundance estimation models: comparison of models for correct application. Mammal Study 45: 177-188.

10.3106/ms2019-0082
19

Jacoby, D.M. and Freeman, R. 2016. Emerging network- based tools in movement ecology. Trends in Ecology & Evolution 31: 301-314.

10.1016/j.tree.2016.01.011
20

Jang, J.E., Kim, N.H., Lim, S., Kim, K.Y., Lee, H.J., and Park, Y.C., 2020. Genetic integrity and individual identification-based population size estimate of the endangered long-tailed goral, Naemorhedus caudatus from Seoraksan National Park in South Korea, based on a non-invasive genetic approach. Animal Cells and Systems 24: 171-179. (in Korean)

10.1080/19768354.2020.178427333209197PMC7651850
21

Karanth, K.U. and Nichols, J.D. 1998. Estimation of Tiger Densities in India Using Photographic Captures and Recaptures. Ecology 79: 2852-2862.

10.1890/0012-9658(1998)079[2852:EOTDII]2.0.CO;2
22

Kim, K.-Y., Lim, S.-J., Ahn, J.-Y., Min, J.-H., and Park, Y.-C. 2020. Morphological keys for identifying long- tailed gorals (Naemorhedus caudatus) and population composition in the Osaek Region of South Korea. Biodiversity Data Journal 8: e58440. (in Korean)

10.3897/BDJ.8.e5844033244291PMC7686204
23

Kim, Y.R., Kim, H.-R., Kim, D.H., Jang, J.E., Son, J.-I., Han, S.-H., et al. 2025. Phylogenetic status and population genetic structure of the long-tailed goral, Naemorhedus caudatus inhabiting the Seoraksan National Park in Korea. Korean Journal of Environmental Biology 43: 28-41. (in Korean)

10.11626/KJEB.2025.43.1.028
24

Lee, S., Kim, B.-J., and Bhang, K.J. 2019. Habitat Analysis of Endangered Korean Long-Tailed Goral (Naemorhedus caudatus raddeanus) with Weather Forecasting Model. Sustainability 11: 6086. (in Korean)

10.3390/su11216086
25

Lim, S.J., Han, S.H., Kim, K.Y., Hong, S., and Park, Y.C., 2023. Relative abundance of mammals and estimation of minimum trapping effort using camera traps in Jangsudae, Seoraksan National Park. Mammal Study 48: 171-179.

10.3106/ms2022-0035
26

Nakashima, Y., Fukasawa, K., and Samejima, H. 2018. Estimating animal density without individual recognition using information derivable exclusively from camera traps. Journal of Applied Ecology 55: 735-744.

10.1111/1365-2664.13059
27

O’Brien, T.G., Kinnaird, M.F., and Wibisono, H.T., 2003. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation forum 6: 131-139.

10.1017/S1367943003003172
28

O’Connell, A.F., Nichols, J.D., and Karanth, K.U., eds. 2011. Camera Traps in Animal Ecology. Springer Japan, Tokyo.

10.1007/978-4-431-99495-4
29

Otis, D.L., Burnham, K.P., White, G.C., and Anderson, D.R. 1978. Statistical inference from capture data on closed animal populations. Wildlife Monographs: 3-135.

30

Park, H.B., Han, C.W., and Hong, S. 2018a. Camera trapping of long-tailed goral (Naemorhedus caudatus) in BaekAm and Geumjong Mountains, South Korea. Journal of Forest and Environmental Science 34: 71-76. (in Korean)

31

Park, H.B., Han, C.W., and Hong, S. 2018b. Camera Trapping of Long-Tailed Goral (Naemorhedus caudatus) in BaekAm and Geumjong Mountains, South Korea. Journal of Forest and Environmental Science 34: 71-76 (in Korean).

32

Park, J., Kang, Y., and Song, Y. 2024. Monitoring bird and mammal diversity using camera trapping in Jingwan-dong wetland. Korean Journal of Environmental Biology 42: 219-231. (in Korean)

10.11626/KJEB.2024.42.3.219
33

Pebesma, E. 2018. Simple features for R: standardized support for spatial vector data.

10.32614/RJ-2018-009
34

Rathod, S., Kumar, A.T., and Haripriya, S. 2023. Data Manipulation using R Tidyverse. Statistical Procedures for Analyzing Agricultural Data using R: 17.

35

Rowcliffe, J.M. and Carbone, C. 2008. Surveys using camera traps: are we looking to a brighter future? Animal Conservation 11.

10.1111/j.1469-1795.2008.00180.x
36

Rowcliffe, J.M., Kays, R., Kranstauber, B., Carbone, C., and Jansen, P.A. 2014. Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution 5: 1170-1179.

10.1111/2041-210X.12278
37

Santini, G., Abolaffio, M., Ossi, F., Franzetti, B., Cagnacci, F., and Focardi, S., 2022. Population assessment without individual identification using camera-traps: A comparison of four methods. Basic and Applied Ecology 61: 68-81.

10.1016/j.baae.2022.03.007
38

Sollmann, R., Gardner, B., and Belant, J.L., 2012. How does spatial study design influence density estimates from spatial capture-recapture models? PloS One 7: e34575.

10.1371/journal.pone.003457522539949PMC3335117
39

Sollmann, R., Gardner, B., Parsons, A.W., Stocking, J.J., McClintock, B.T., Simons, T.R., et al. 2013. A spatial mark-resight model augmented with telemetry data. Ecology 94: 553-559.

10.1890/12-1256.1
40

Spear, S.F., Balkenhol, N., Fortin, M.-J.. Mcrae, B.H., and Scribner, K. 2010. Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology 19: 3576-3591.

10.1111/j.1365-294X.2010.04657.x
41

Van Etten, J. 2017. R package gdistance: Distances and routes on geographical grids. Journal of Statistical Software 76: 1-21.

10.18637/jss.v076.i13
42

Villanueva, R.A.M. and Chen, Z.J., 2019. ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Measurement: Interdisciplinary Research and Perspectives 17: 160-167.

10.1080/15366367.2019.1565254
43

Waits, L.P. and Paetkau, D. 2005. Noninvasive Genetic Sampling Tools for Wildlife Biologists: A Review of Applications and Recommendations for Accurate Data Collection. The Journal of Wildlife Management 69: 1419-1433.

10.2193/0022-541X(2005)69[1419:NGSTFW]2.0.CO;2
44

Whitehead, H. 2008. Analyzing animal societies: quantitative methods for vertebrate social analysis. University of Chicago Press.

10.7208/chicago/9780226895246.001.0001
45

Zeller, K.A., McGarigal, K., and Whiteley, A.R. 2012. Estimating landscape resistance to movement: a review. Landscape Ecology 27: 777-797.

10.1007/s10980-012-9737-0
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 12
  • No :3
  • Pages :127-140
  • Received Date : 2025-07-24
  • Revised Date : 2025-08-14
  • Accepted Date : 2025-08-25