All Issue

2018 Vol.5, Issue 3 Preview Page

Original Article

30 September 2018. pp. 189-198
Abstract
References
1
Abdalla, M., Wattenbach, M., Smith, P., Ambus, P., Jones, M., and Williams, M. 2009. Application of the DNDC model to predict emissions of N2O from Irish agriculture. Geoderma 151(3-4): 327-337.
10.1016/j.geoderma.2009.04.021
2
Berestovskaya, Y.Y., Rusanov, I.I., Vasil’eva, L.V., and Pimenov, N.V. 2005. The processes of methane production and oxidation in the soils of the Russian Arctic tundra. Microbiology 74(2): 221-229.
10.1007/s11021-005-0055-2
3
Chapman, S.J., Kanda, K., Tsuruta, H., and Minami, K. 1996. Influence of temperature and oxygen availability on the flux of methane and carbon-dioxide from wetlands - a comparison of feat and paddy soils. Soil Science and Plant Nutrition 42(June 2014): 269-277.
4
Chapman, S.J., Kanda, K.I., Tsuruta, H., and Minami, K. 1996. Influence of temperature and oxygen availability on the flux of volatile sulphur compounds from wetlands: A comparison of peat and paddy soils. Soil Science and Plant Nutrition 42(2): 279-288.
5
Cha-Un, N., Chidthaisong, A., and Towprayoon, S. 2017. Using the DNDC model to predict methane emissions from crop-rice rotation systems. Research Journal of Chemistry and Environment 21(3): 36-46.
6
Furukawa, Y., Inubushi, K., and Furukawa, Y. 2004. Effect of application of iron materials on methane and nitrous oxide emissions from two types of paddy soils. Soil Science and Plant Nutrition 50(6): 917-924.
10.1080/00380768.2004.10408554
7
Gilhespy, S.L., Anthony, S., Cardenas, L., Chadwick, D., del Prado, A., Li, C., Misselbrook, T., Rees, R.M., Salas, W., Sanz-Cobena, A., Smith, P., Tilston, E.L., Topp, C.F.E., Vetter, S., and Yeluripati, J.B. 2014. First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecological Modelling 292: 51-62.
10.1016/j.ecolmodel.2014.09.004
8
Giltrap, D.L., Li, C., and Saggar, S. 2010. DNDC: A process-based model of greenhouse gas fluxes from agricultural soils. Agriculture, Ecosystems and Environment 136(3-4): 292-300.
10.1016/j.agee.2009.06.014
9
Gregorich, E., Janzen, H.H., Helgason, B., and Ellert, B. 2015. Nitrogenous gas emissions from soils and greenhouse gas effects. Advances in Agronomy 132 39-74.
10.1016/bs.agron.2015.02.004
10
Hwang, W., Kim, Y., Min, H., Kim, J., Cho, K., and Hyun, S. 2017. Evaluating the applicability of the DNDC model for estimation of CO2 emissions from the paddy field in Korea. Korean Journal of Environmental Biology 35(1): 13-20.
10.11626/KJEB.2017.35.1.013
11
IPCC. 2013. Working group I contribution to the IPCC fifth assessment report climate change 2013: The physical science basis. http://www.climatechange2013. org/report/. Accessed 12. Feb. 2018.
12
Kammann, C., Hepp, S., Lenhart, K., and Müller, C. 2009. Stimulation of methane consumption by endogenous CH4 production in aerobic grassland soil. Soil Biology and Biochemistry 41(3): 622-629.
10.1016/j.soilbio.2008.12.025
13
Kasimir, A., Klemedtsson, L., Berglund, K., Martikainen, P., Silvola, J., and Oenema, O. 1997. Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management 13(s4): 245-250.
10.1111/j.1475-2743.1997.tb00595.x
14
Kasimir-Klemedtsson, A., Klemedtsson, L., Berglund, K., Martikainen, P., Silvola, J., and Oenema, O. 1997. Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management 13(4): 245-250.
10.1111/j.1475-2743.1997.tb00595.x
15
Kasimir-Klemedtsson Å, L Klemedtsson, K Berglund, P Martikainen, J Silvola and O Oenema. 1997. Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management 13(s4): 245-250.
10.1111/j.1475-2743.1997.tb00595.x
16
Li, K., Liu, R., and Sun, C. 2016. A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews 54: 857-865.
10.1016/j.rser.2015.10.103
17
Minamikawa, K. and Sakai, N. 2005. The effect of water management based on soil redox potential on methane emission from two kinds of paddy soils in Japan. Agriculture, Ecosystems and Environment 107(4): 397-407.
10.1016/j.agee.2004.08.006
18
Minamikawa, K., Fumoto, T., Itoh, M., Hayano, M., Sudo, S., and Yagi, K. 2014. Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: A long-term simulation using the DNDC-Rice model. Biology and Fertility of Soils 50(6): 879-889.
10.1007/s00374-014-0909-8
19
Munoz, C., Paulino, L., Monreal, C., and Zagal, E. 2010. Greenhouse gas (CO2 and N2O) emissions from soils: a review. Chilean Journal of Agricultural Research 70(3): 485-497.
10.4067/S0718-58392010000300016
20
Schütz, H., Seiler, W., and Conrad, R. 1990. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry 11(Conrad 1989): 77-95.
21
Segers, R. 1998. Methane production and methane consumption--a review of processes underlying wetland methane fluxes [Review]. Biogeochem. 41 23-51.
10.1023/A:1005929032764
22
Towprayoon, S., Smakgahn, K., and Poonkaew, S. 2005. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 59(11): 1547-1556.
10.1016/j.chemosphere.2005.02.00915894043
23
Xu, S., Shi, X., Zhao, Y., Yu, D., Li, C., Wang, S., Tan M., and Sun, W. 2011. Carbon sequestration potential of recommended management practices for paddy soils of China, 1980-2050. Geoderma 166(1): 206-213.
10.1016/j.geoderma.2011.08.002
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 5
  • No :3
  • Pages :189-198
  • Received Date : 2018-09-17
  • Revised Date : 2018-09-19
  • Accepted Date : 2018-09-19